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i Americans experience 12 million diagnostic i
' errors a year. |
: :
1 1
1 1
1 1

(Reference link from CBS news)

———————————————————————————————————————————————

i 28 % of diagnostic mistakes are life threatening
+ or result in death or permanent disability.

i (Reference link from NCPA)

Breast cancer misdiagnosis costs S4B/year.

(Reference link from CNBC news) i


https://www.cbsnews.com/news/12-million-americans-misdiagnosed-each-year-study-says/
https://ncpa.org/sub/dpd/index.php?Article_ID=23148#sthash.HijHUgWl.dpuf
https://www.cnbc.com/2015/04/06/breast-cancer-misdiagnoses-cost-4-billion-study.html




Medical imaging Many modalities/case: 700 Billion images/year
in the US alone

OCT retina Prostate U/S Lung X-Ray




We need to talk: Pathologists,
Patients, and Diagnostic errors.

Survey of 260 pathologists and 81
laboratory medical directors with
response rate 51%

The pathologist 06/23/2016

(Reference link)

Near misses should be disclosed to patients

Where you disclosed a serious error to a patient, were you satisfied
with the results? (Did you experience relief after disclosure?)



https://thepathologist.com/inside-the-lab/we-need-to-talk-pathologists-patients-and-diagnostic-errors-part-i

The source of all problems

Inter-Observer Variability

PROSTATE BLADDER ABDOMINAL BREAST PULMONARY
BMerror Mwithout error EMerror Mwithout error AORTA LUMPECTOMY CAVITY NODULES

BMerror MW without error HMerror M without error HMerror MW without error




Inter-Observer Variability is more scary




What can Artificial Intelligence do?

A.l., especially Machine Learning, allows for a computer model to learn and
extract meaningful patterns from data in a semi-automatic manner.
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Telepathology, diagnostic %
consultation, collaborative
research
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Digital Pathology
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Pathology: Conventional Microscopy
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Pathology: Virtual Microscopy

Digital System
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Going 100 % Digital

Making the move to 100 Percent Digital:

The LabPon is the first laboratory in
the world to digitise its histopathology
service fully

LABPON

Laboratorium Pathologie Oost-Nederland

DP has four key benefits:

Efficient workflows

Connected teams

Increased safety

New insights from analysing large datasets
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LABPON

Laboratorium Pathologie Oost-Nederland

The potential operational cost savings for 5 years following the implementation of a digital pathology
solution were estimated at around $18 million.

The main contributing factors were gains in pathologist time by higher productivity and better workload
distribution ($12.4 million), and reduced costs of incorrect treatment.

The over- and under-treatment costs in oncology were estimated at $5.4 million.
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HURON Digital Pathology
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Whole Slide Images (WSI): Setup
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Whole Slide Images (WSI):
Image View
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Magn iﬁcation To calculate magnification

Eyepiece at 10x

Objective lens at 4x
eyepiece x objective lens = magnification

- (e

Biological / Compound Microscope

Magnification # Resolution

Optical Resolution = f(Objective Lenses)
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The added boost at
magnification comes
from the monitor's
workstation.

Digital Resolution = f(Objective Lens, Digital Camera Sensor, Monitor)

1 pixel = 10 ym at
the sensor

Objective Lens
provides 20x
magnification

A
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96 dpi= 270 um pixel at

monitor
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Concordance between Digital
Pathology and Light Microscopy




Journal

N | of Clinical
Concordance between digital pathology and light Pathology

microscopy in general surgical pathology: a pilot
study of 100 cases

Joseph P Houghton,' Aaron J Ervine,” Sarah L Kenny,* Paul J Kelly,’
Seamus S Napier,” W Glenn McCluggage,” Maureen Y Walsh,” Peter W Hamilton®

There was concordance between the original light microscopy diagnosis and digital
pathology-based diagnosis in 95 of the 100 cases while the remaining 5 cases showed
only slight discordance (with no clinical consequence). None of the cases were
categorised as discordant. Participants had mixed experiences using digital pathology
technology.
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ARCHIVES

of Pathology & Laboratory Medicine

The Diagnostic Concordance of Whole Slide Imaging
and Light Microscopy

A Systematic Review

Edward Goacher, BSc; Rebecca Randell, PhD; Bethany Williams, MBBS; Darren Treanor, MB, B5c, PhD, FRCFPath

Thirty-eight studies were included in the review. The mean diagnostic concordance of
WSI and LM, weighted by the number of cases per study, was 92.4%. The weighted
mean K coefficient between WSI and LM was 0.75, signifying substantial agreement. Of
the 30 studies quoting percentage concordance, 18 (60%) showed a concordance of
90% or greater, of which 10 (33%) showed a concordance of 95% or greater. This review
found evidence to support a high level of diagnostic concordance. However, there were
few studies, many were small, and they varied in quality, suggesting that further
validation studies are still needed. 7
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Digital pathology for the primary diagnosis of breast
histopathological specimens: an innovative validation and
concordance study on digital pathology validation and training

Bethany Jill Williams B Andrew Hanby, Rebecca Millican-Slater, Anju Nijhawan, Eldo Verghese,
Darren Treanor

Three specialty breast pathologists completed training in using a digital microscopy
system. They were exposed to a training set of 20 challenging cases, designed to help
them identify personal digital diagnostic pitfalls. Following this, the three pathologists
viewed a total of 694 live, entire breast cases. All primary diagnoses were made on digital
slides, with immediate glass slide review and reconciliation before the final case sign-out.
There was complete clinical concordance between the glass and digital impression of the
case in 98.8% of cases. -



Recommendations for
Validating Whole Slide
Imaging Systems for
Diagnostic Purposes in
Pathology

Anil V Parwani, MD, PhD
On behalf of the CAP
WSI Validation Expert
Panel




CAP Recommendations

The validation study should encompass the entire WSI system
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-The validation process should include at least 60 cases for one application... reflecting
the spectrum and complexity of specimen types and diagnoses likely to be encountered

during routine practice.

-The validation study should establish a diagnostic concordance between digital and

glass slides for the same observer (i.e., intraobserver variability).

-The washout period of at least 2 weeks should occur between viewing digital and glass

slides.
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Clinical Pathology Challenges:

Inter-observer variance

Intra-observer variance

Lack of quantitative, objective, and reproducible
measures to assess patient biopsies

The human brain can keep track of only a few variables

-




Workflow of digital pathology
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What can Al do with images?

Generate Segmentation Search Pathology report

Classify generator

Yes / No
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... CAME[L\VONW

The data in this challenge contains whole-slide images (WSI) of hematoxylin and
eosin (H&E) stained lymph node sections.

Depending on the particular data set (see below), ground truth is provided:
*On a lesion-level: with detailed annotations of metastases in WSI.
*On a patient-level: with a pN-stage label per patient.
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Datasets

The TCGA has many cancers, with over 1.2 petabytes of
data, including pathology slides.

The Camelyon has 1399 WSIs with tumor marking in

metastasis, without subtyping, not configuring a
diagnosis.

However, most public datasets are not in WSIs or do not
have pathologists’ pixel-level annotations.

39
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Tissue Segmentation WSI Patching

Images that can have more than 0 billion pixels, cannot be used fully as an input of a neural
network without overflowing memory.

Therefore, all studies divided the WSIs into smaller patches (such as “56x256 pixels), using overlap

or not as data augmentation, to feed their models.
40



77781 pixels

158002 pixels
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Deep Learning & Convolutional Neural Nets
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Whole-Slide Inference

ResNet Patch Classifier
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Machine learning.
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The idea of Multiple Instance Learning (MIL) in WSI analyses

Deep-Learning
Computer Vision
Model
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Problem Statement of general MIL (MIL-G)
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Main Components of MIL-WSI Framework

Patch Selection
Method

J

Function

Patch-level
Feature Representation

WSl-level
Predictor

-
Transformation Pooling
Operation - I:l —
WSi-level
Feature Representation

= 0

Final score
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Categories of Patch Selection Methods

(i) Completely random selection

(ii)) Random selection with the region of interest (ROI).

(iii) Feature-based selection.

(iv) Hierarchical selection.



[ selected
] Discarded

Completely Random Selection Random Selection with ROI

1A 200 -

Sowurce: hitps:igithub_com/mahmoadiab/HIPT
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Categories of Pooling Operations

1- Static Pooling

2- Adaptive Pooling

These methods adaptively update the patch contribution to its WSI. This category
contains trainable pooling, dynamic pooling, differential evolutionary pooling, and
so on. Generally, the adaptive pooling operation is changed iteration by iteration as
we train the MIL-WSI framework. Interesting examples of this category are
Attention-based pooling and Hopfield pooling, both of which belong to trainable

pooling.



Max Pooling

Static Pooling

Transformation
function
fx)
.—0 21 3.3 51 21 5.6 T
WSl-level
Feature representation
0.1 56 Tl
Patch-level
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Average Pooling

Transformation
function
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' » 1.2 35 24
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WSl-level
Feature representation
—p 0.1 5.6 7.7
Patch-level

Feature representation
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Traditional Pathology



Global
DIGITALPATHOLOGY
Market

Opportunities and Forecasts,
2021-2030

Global Digital Pathology Market is expected
to reach $1791.3 Million by 2030

Growing at a
CAGR of 9.3% (2021-2030)




U.S. Digital Pathology Market EvVvVE

Size, by Product, 2020 - 2030 (USD Million) GRAND VIEW RESEARCH

$342.0M

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
@ Device Software Storage System

1.2%

U.S. Market CAGR,
2024 - 2030
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B Scanner W Software

Global Digital Pathology Market . storage systems Other Products
Size by Product 2022-2032 (USD Million)
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Global Digital Pathology Market Size and Scope AA%"EASRE'XERTCH
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Global Al in Pathology Market mSoftware M Scanners
Size, by Component, 2023-2033 (USD Billion)
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Global Al in Pathology Market

Share, by End user, 2023 (%)

W Hospital & Reference labs

B Pharma & Biotech
companies
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A\l market.us

$27.2B
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